Document Type
|
:
|
BL
|
Record Number
|
:
|
855693
|
Title & Author
|
:
|
Biodegradable thermogels /\ edited by Xian Jun Loh and David James Young.
|
Publication Statement
|
:
|
London :: Royal Society of Chemistry,, [2019]
|
Series Statement
|
:
|
Biomaterials science series,; no. 2
|
Page. NO
|
:
|
1 online resource :: illustrations
|
ISBN
|
:
|
152312296X
|
|
:
|
: 1788012674
|
|
:
|
: 9781523122967
|
|
:
|
: 9781788012676
|
|
:
|
1782629408
|
|
:
|
9781782629405
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references and index.
|
Contents
|
:
|
Cover; Preface; Contents; Chapter 1 Thermogelling Polymers and Their History; 1.1 Introduction; 1.2 Synthesis; 1.3 Micellization and Thermogelling Properties; 1.3.1 Gelation Mechanism; 1.3.2 Kinetics of Micellization; 1.3.3 Formation of Micelles with Different Morphologies; 1.4 Pluronic Systems in the Biomedical Sciences; 1.4.1 Early Uses; 1.4.2 Wound Healing; 1.4.3 Drug Delivery; 1.5 Disadvantages of Pluronic Systems; 1.6 Modifications of Pluronic Copolymers; 1.6.1 Modified Pluronic Copolymers for Improved Mechanical Properties.
|
|
:
|
1.6.2 Modified Pluronic Copolymers for Improved Biodegradability1.7 Modern Applications of Pluronics; 1.8 Future Perspectives; References; Chapter 2 Thermogelling PLGA-based Copolymers; 2.1 History and Structures; 2.2 Synthesis; 2.3 Properties; 2.3.1 Reversible Sol-to-gel Transition; 2.3.2 Degradation; 2.3.3 Biocompatibility; 2.4 Applications; 2.4.1 Drug Release; 2.4.2 Gene Delivery; 2.4.3 Postoperative Adhesion Prevention; 2.5 Areas for Future Research; 2.6 Conclusions; References.
|
|
:
|
4.7.1 Toxicological Aspects of the Use of Dextran Microspheres and Thermogelling Ethyl(hydroxyethyl) Cellulose as Nasal Drug-delivery Systems4.7.2 In-vivo Pharmacological Evaluations of an Antioxidant-loaded Biodegradable Thermogel; 4.8 Conclusion; References; Chapter 5 Injectable Thermogelling Polymers for Bone and Cartilage Tissue Engineering; 5.1 Introduction; 5.2 Scaffold Requirements for Bone and Cartilage Tissue Engineering; 5.3 Chemistry and Properties of Selected Injectable Thermogelling Scaffolds; 5.3.1 Totally Non-degradable Polymers; 5.3.2 Enzymatically Degradable Polymers.
|
|
:
|
Chapter 3 Polyester-based Biodegradable Thermogelling Systems as Emerging Materials for Therapeutic Applications3.1 Introduction; 3.2 Polyester-based Thermogelling Systems; 3.2.1 The Poly(lactic acid)-based Thermogelling Systems; 3.2.2 Polycaprolactone-based Thermogelling Systems; 3.2.3 Poly([R]-3-hydroxybutyrate)-based Thermogelling System; 3.2.4 Poly(glycerol sebacate)-based Thermogelling Systems; 3.3 Application of Polyester-based Thermogelling Systems; 3.3.1 Therapeutic Delivery; 3.3.2 Tissue Engineering; 3.4 Conclusion; Abbreviations; References.
|
|
:
|
Chapter 4 Biodegradable Thermogelling Polymers for Drug Delivery4.1 Introduction; 4.2 Thermogelling Mechanism; 4.3 Mechanism of Drug Release in Thermogels; 4.4 Advantages and Disadvantages of Thermogelling Polymeric Materials Compared to Other Drug-delivery Methods; 4.5 Delivery of Insulin and Protein Drugs in the Treatment of Diabetes; 4.6 Adaptation of Thermogels for Biomedical Applications; 4.6.1 Selenium-containing Thermogels; 4.6.2 Matrix Metalloproteinase-sensitive Thermogelling Polymers; 4.7 Towards Understanding In-vivo Effectiveness of Polymeric Thermogel Drug Delivery.
|
Abstract
|
:
|
Biodegradable thermogels are a promising class of stimuli-responsive polymers. This book summarizes recent developments in thermogel research with a focus on synthesis and self-assembly mechanisms, gel biodegradability, and applications for drug delivery, cell encapsulation and tissue engineering.
|
Subject
|
:
|
Polymers in medicine.
|
Subject
|
:
|
Polymers-- Biotechnology.
|
Subject
|
:
|
Polymers in medicine.
|
Subject
|
:
|
Polymers-- Biotechnology.
|
Subject
|
:
|
SCIENCE-- Chemistry-- Organic.
|
Dewey Classification
|
:
|
547/.7
|
|
:
|
610.284
|
LC Classification
|
:
|
R857.P6B56 2019
|
|
:
|
TP248.65.P62
|
Added Entry
|
:
|
Loh, Xian Jun
|
|
:
|
Young, David James
|