|
" Algebraic and analytic microlocal analysis : "
Michael Hitrik, Dmitry Tamarkin, Boris Tsygan, Steve Zelditch, editors.
Document Type
|
:
|
BL
|
Record Number
|
:
|
859526
|
Title & Author
|
:
|
Algebraic and analytic microlocal analysis : : AAMA, Evanston, Illinois, USA, 2012 And 2013 /\ Michael Hitrik, Dmitry Tamarkin, Boris Tsygan, Steve Zelditch, editors.
|
Publication Statement
|
:
|
Cham, Switzerland :: Springer,, [2018]
|
Series Statement
|
:
|
Springer proceedings in mathematics and statistics ;; volume 269
|
Page. NO
|
:
|
1 online resource
|
ISBN
|
:
|
3030015882
|
|
:
|
: 9783030015886
|
|
:
|
3030015866
|
|
:
|
9783030015862
|
Notes
|
:
|
11 Appendix 2: Results From bibKS on Functorial Properties of Microsupport
|
Contents
|
:
|
Intro; Preface; Algebraic Microlocal Analysis; Analytic Microlocal Analysis; References; Contents; Part I Algebraic Microlocal Analysis; Procesi Bundles and Symplectic Reflection Algebras; 1 Introduction; 1.1 Procesi Bundles: Hilbert Scheme Case; 1.2 Quotient Singularities and Symplectic Resolutions; 1.3 Procesi Bundles: General Case; 1.4 Symplectic Reflection Algebras; 1.5 Notation and Conventions; 2 Quantizations; 2.1 Algebra Level; 2.2 Sheaf Level; 2.3 Modules Over Quantizations; 2.4 Frobenius Constant Quantizations; 3 Hamiltonian Reductions; 3.1 Classical Hamiltonian Reduction
|
|
:
|
1.2 Microlocalization1.3 Microsupport; 1.4 The Functor µhom; 1.5 An Application: Elliptic Pairs; 2 Lecture 2: Microlocal Euler Classes and Hochschild Homology; 2.1 Hochschild Homology on Complex Manifolds; 2.2 Microlocal Homology; 2.3 Trace Kernels and Microlocal Euler Classes; 2.4 Microlocal Euler Class of Constructible Sheaves; 2.5 Microlocal Euler Class of mathscrD-Modules; 2.6 Microlocal Euler Class of Elliptic Pairs; 3 Lecture 3: Ind-Sheaves and Applications to mathscrD-Modules; 3.1 Ind-Sheaves; 3.2 Sheaves on the Subanalytic Site; 3.3 Moderate and Formal Cohomology
|
|
:
|
3.2 Quantum Hamiltonian Reduction3.3 Quantum Hamiltonian Reduction for Frobenius Constant Quantizations; 4 Existence and classification of Procesi bundles; 4.1 Construction of Procesi Bundles; 4.2 Symplectic Reflection Algebras; 4.3 Proof of the Isomorphism Theorem; 4.4 Classification of Procesi bundles; 5 Macdonald positivity and categories mathcalO; 5.1 Derived equivalence; 5.2 Category mathcalO; 5.3 Macdonald positivity; 5.4 Localization theorem; References; Three Lectures on Algebraic Microlocal Analysis; 1 Lecture 1: Microlocalization of Sheaves; 1.1 Generalized Functions
|
|
:
|
3.4 Applications to mathscrD-Modules I3.5 Applications to mathscrD-Modules II; References; Microlocal Condition for Non-displaceability; 1 Introduction; 2 Generalities; 2.1 Unbounded Derived Category; 2.2 Sheaves on XtimesmathbbR; 3 Non-displaceability Condition; 3.1 Disjoint Supports; 3.2 Hamiltonian Shifts; 4 Non-dispaceability of Certain Lagrangian Submanifolds in mathbbCPn; 4.1; 4.2 Proof of Proposition 4.7; 4.3 Proof of Proposition 4.8; 5 Proof of Proposition 4.4: Constructing umathcalO; 5.1 Constructing umathcalO; 5.2 Proof of Proposition 4.4 (1); 5.3 Proof of Proposition 5.2; 5.4
|
Subject
|
:
|
Algebraic functions, Congresses.
|
Subject
|
:
|
Microlocal analysis, Congresses.
|
Subject
|
:
|
Algebraic functions.
|
Subject
|
:
|
Microlocal analysis.
|
Dewey Classification
|
:
|
515/.7
|
LC Classification
|
:
|
QA299.6.A44 2018
|
Added Entry
|
:
|
Hitrik, Michael
|
|
:
|
Tamarkin, Dmitry
|
|
:
|
Tsygan, Boris
|
|
:
|
Zelditch, Steven,1953-
|
Added Entry
|
:
|
AAMA (Workshop)(2012 :, Evanston, Ill.)
|
|
:
|
AAMA (Workshop)(2013 :, Evanston, Ill.)
|
| |