رکورد قبلیرکورد بعدی

" Deep learning classifiers with memristive networks : "


Document Type : BL
Record Number : 861200
Title & Author : Deep learning classifiers with memristive networks : : theory and applications /\ Alex Pappachen James, editor.
Publication Statement : Cham, Switzerland :: Springer,, [2020].
Series Statement : Modeling and optimization in science and technologies,; volume 14
Page. NO : 1 online resource (xiii, 213 pages) :: illustrations (some color).
ISBN : 3030145239
: : 3030145247
: : 9783030145231
: : 9783030145248
: 3030145220
: 9783030145224
Abstract : This book introduces readers to the fundamentals of deep neural network architectures, with a special emphasis on memristor circuits and systems. At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks. It then focuses on the design of these neural networks using memristor crossbar architectures in detail. The book integrates the theory with various applications of neuro-memristive circuits and systems. It provides an introductory tutorial on a range of issues in the design, evaluation techniques, and implementations of different deep neural network architectures with memristors.
Subject : Machine learning.
Subject : Neural networks (Computer science)
Subject : Machine learning.
Subject : Neural networks (Computer science)
Dewey Classification : ‭006.3/2‬
LC Classification : ‭QA76.87‬
Added Entry : James, Alex Pappachen
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟