رکورد قبلیرکورد بعدی

" The Hodge-Laplacian : "


Document Type : BL
Record Number : 863381
Main Entry : Mitrea, Dorina,1965-
Title & Author : The Hodge-Laplacian : : boundary value problems on Riemannian manifolds /\ Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor.
Publication Statement : Berlin ;Boston :: De Gruyter,, 2016.
Series Statement : De Gruyter Studies in Mathematics,; Volume 64
Page. NO : 1 online resource
ISBN : 3110484382
: : 3110484390
: : 9783110484380
: : 9783110484397
: 3110482665
: 3110483394
: 9783110482669
: 9783110483390
Bibliographies/Indexes : Includes bibliographical references.
Contents : Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains.
Abstract : The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex.
Subject : Boundary value problems.
Subject : Riemannian manifolds.
Subject : Boundary value problems.
Subject : Laplace-Operator
Subject : MATHEMATICS-- Geometry-- General.
Subject : Randwertproblem
Subject : Riemannian manifolds.
Subject : Riemannscher Raum
Dewey Classification : ‭516.373‬
LC Classification : ‭QA649‬‭.M58 2016‬
NLM classification : ‭31B10‬31B2531C1235A0135B2035J0835J2535J5535J5735Q6135R0142B2042B2542B3745A0545B0545E0545F1545P0547B3847G1049Q1558A1058A1258A1458A1558A3058C3558J0558J3278A30msc
Added Entry : Mitrea, Irina
: Mitrea, Marius
: Taylor, Michael E.,1946-
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟