رکورد قبلیرکورد بعدی

" Principles of chemical engineering practice / "


Document Type : BL
Record Number : 878290
Main Entry : DeLancey, George.
Title & Author : Principles of chemical engineering practice /\ George DeLancey.
Publication Statement : Hoboken, N.J. :: Wiley,, 2013.
Page. NO : 1 online resource
ISBN : 1118612507
: : 1118612787
: : 1299619037
: : 9781118612507
: : 9781118612507
: : 9781118612781
: : 9781299619036
: 0470536748
: 9780470536742
Notes : Title from resource description page (Recorded Books, viewed November 21, 2013).
Bibliographies/Indexes : Includes bibliographical references and index.
Contents : Principles Of Chemical Engineering Practice -- Contents -- Preface -- Part I: Macroscopic View -- 1 Chemical Process Perspective -- 1.1 Some Basic Concepts in Chemical Processing -- 1.2 Acrylic Acid Production -- 1.2.1 Catalysis -- 1.2.2 Feed Section-Pumps and Compressors -- 1.2.3 Reactor Section-Reactor, Heat Exchangers, and Gas Absorption -- 1.2.4 Downstream Processing-Distillation and Extraction -- 1.2.5 Storage -- 1.2.6 Safety -- 1.2.7 Overview of Typical Process -- 1.3 Biocatalytic Processes-Enzymatic Systems -- 1.3.1 Biotransformation -- 1.3.2 Examples of Industrial Processes -- 1.3.3 Alkyl Glucosides -- 1.4 Basic Database -- Problems -- 2 Macroscopic Mass Balances -- 2.1 Chemical Processing Systems -- Example 2.1-1: Active Units in Acrylic Acid Separation Train -- 2.1.1 Input and Output Rates of Flow -- 2.1.1.1 Some Equations of State -- Example 2.1.1.1-1: Calculate the Molar Volume of Methane at -250° F -- 2.1.1.2 Mass Rate of Production -- 2.2 Steady-State Mass Balances Without Chemical Reactions -- 2.2.1 Degrees of Freedom -- Example 2.2.1-1: Manufacture of Sugar -- Example 2.2.1-2: Air Separation Plant -- 2.3 Steady-State Mass Balances with Single Chemical Reactions -- 2.3.1 Degrees of Freedom: Reaction Rate and Key Component -- Example 2.3.1-1: Production of Formaldehyde -- Example 2.3.1-2: Manufacture of Nitroglycerin -- 2.4 Steady-State Mass Balances with Multiple Chemical Reactions -- 2.4.1 Degrees of Freedom and Reaction Extents -- Example 2.4.1-1: Mass Balance on Acrylic Acid Reactor R-301 -- 2.4.2 Test for Independent Reactions -- Example 2.4.2-1: Independent Reactions in the Acrylic Acid System -- Example 2.4.2-2: Selection of Independent Reactions -- 2.4.3 Construction of Independent Reactions -- Example 2.4.3-1: Independent Reactions in the Acrylic Acid System -- Problems -- 3 Macroscopic Energy and Entropy Balances.
: 3.1 Basic Thermodynamic Functions -- 3.1.1.1 Gibbs-Duhem Equation -- 3.2 Evaluation of H and S for Pure Materials -- 3.2.1 Gases-Departure Functions -- Example 3.2.1-1: Departure Functions for H and S Using the Redlich-Kwong- Soave (RKS) Equation of State -- Example 3.2.1-2: Evaluation of an Enthalpy Change for Ethylene -- 3.2.2 Liquids and Solids -- Example 3.2.2-1: Enthalpy Change in the Injection Molding of Polystyrene -- 3.3 Evaluation of H and S Functions for Mixtures -- 3.3.1 Ideal Gas Mixture -- 3.3.2 Ideal Solution -- 3.3.3 Nonideal Gas Mixtures -- 3.3.4 Nonideal Liquid Solutions: Heat of Solution -- Example 3.3.4-1: Partial Molar Enthalpies for HCl-Water System -- 3.4 Energy Flows and the First Law -- 3.4.1 Degrees of Freedom -- 3.5 Energy Balances Without Reaction -- 3.5.1 Utilization of the Second Law -- Example 3.5.1-1: Minimum Work Required for Isothermal Pumping of a Liquid -- 3.5.2 System Definition for Duty and Flow Rate Calculation -- Example 3.5.2-1: Calculation of Heat Duty and Stream Flow Rate for Exchanger E-309 -- 3.5.3 Arbitrariness of Reference State for Unreactive Systems -- Example 3.5.3-1: Energy Balance on T-303 Extraction Unit. Feed Reference State -- Example 3.5.3-2: Calculation of Net Heat Duty for Distillation Tower T-304. Feed Reference State -- 3.5.4 Mixing of Nonideal Liquids -- Use of Partial Molar Quantities -- 3.5.4.1 Mixing Two Liquid Streams at Different Temperatures and Concentrations -- Example 3.5.4.1-1: Dilution of an HCl Mixture -- 3.6 Energy Balances with Reaction-Ideal Solution -- 3.6.1 Single Reaction-Ideal Solution -- 3.6.1.1 Reference States for Reactive Systems-Standard Heat of Reaction -- 3.6.1.2 Heat Duty and Adiabatic Operation -- Example 3.6.1.2-1 Energy Balances on Methanol Oxidation Reactor -- 3.6.2 Single Reactions-Neutralization of Acids -- 3.6.3 Multiple Reactions.
: 5.3.2.4 Solid Suspensions -- Example 5.3.2.4-1 Sizing of Hexyl Glucoside Slurry Adsorber -- Problems -- 6 Separation and Reaction Processes in Completely Mixed Systems -- 6.1 Phase Equilibrium: Single-Stage Separation Operations -- 6.2 Gas-Liquid Operations -- 6.2.1.1 Gas Absorption and Stripping -- 6.2.1.2 Flash Vaporization -- 6.2.2 Vapor-Liquid Equilibrium -- 6.2.2.1 Equation of State Method -- 6.2.2.2 Activity Coefficient Method -- 6.2.2.3 Summary of VLE Expressions and Data -- Example 6.2.2.3-1: Comparison of Several Methods for Obtaining the K Values for an Equimolar Mixture of Ethane, Propane, and n-Butane at -70° F and 300 psi -- 6.2.3 Gas Absorption and Stripping -- 6.2.3.1 Mass Balance-Constant Total Flows -- 6.2.3.2 Mass Balances-Nondiffusing Components -- Example 6.2.3.2-1: Acetone Absorption -- Example 6.2.3.2-2: Determine the Solvent Requirements for Single- Stage Version of Tower 302: Off-Gas Absorber in Acrylic Acid Process -- 6.3 Flash Vaporization -- 6.3.1 Mass Balances -- 6.3.2 Energy Balance -- 6.3.3 Equilibrium -- 6.3.4 Common Problem Specifications -- 6.3.5 Distribution Function-Limitations -- 6.3.6 Bounds on Bubble and Dew Points -- 6.3.7 Solution for NV=NF = 0, P-Bubble-Point Temperature -- Example 6.3.7-1: Calculate the Bubble Point of the Following Mixture at 2 atm -- Example 6.3.7-2: Saturation Temperature for IPA-Water System -- 6.3.8 Solution: for NV=NF = 1, P Specified: Dew-Point Temperature -- Example 6.3.8-1: Calculate the Dew Point of the Mixture in the Preceding Example -- Example 6.3.8-2: Calculate the Dew Point of an Equimolar Mixture of Propylene and Isobutane at 20 atm Assuming an Ideal Liquid and Application of the Peng-Robinson Equation of State for the Vapor -- Example 6.3.8-3: Repeat Example 6.3.8-2 but Use the DePriester Charts to Formulate the Equilibrium Relations.
: 6.3.9 Solution for T, P Specified: Isothermal Flash -- Example 6.3.9-1: Isothermal Flash Calculation -- Example 6.3.9-2: Flash of the Extract from the Acid Extractor (Tower 303), Stream 13 -- 6.3.10 General Isothermal Flash Iteration -- 6.3.11 Sizing of Flash Drum -- Example 6.3.11-1: Size the Flash Drum for Example 6.3.9-1 -- 6.4 Liquid-Liquid Extraction -- 6.4.1 Equilibrium in Ternary Systems -- 6.4.1.1 Solvent Selection -- 6.4.1.2 Data Collection and Representation -- 6.4.1.3 Interpolation -- 6.4.2 Single-Stage Operation -- 6.4.2.1 Equipment -- 6.4.2.2 Mixture Rule -- 6.4.2.3 Mass Balances -- Example 6.4.2.3-1: Extraction of HAc from Chloroform with Water -- Example 6.4.2.3-2: T-303 Acid Extractor-Solvent Flow for Single Equilibrium Stage -- 6.5 Adsorption -- 6.5.1 Adsorbents -- 6.5.2 Gas Adsorption -- 6.5.2.1 Equilibrium Relations for a Single Adsorbate -- 6.5.3 Liquid Adsorption -- 6.5.3.1 Equilibrium -- 6.5.3.2 Liquid Adsorption Operations -- 6.6 Single-Phase Stirred Tank Reactors -- 6.6.1 Continuous Stirred Tank Reactors -- 6.6.1.1 Liquid Phase Systems-Temperature Specified -- 6.6.1.2 Gas Phase Systems-Temperature Specified -- Example 6.6.1.2-1: Multiple Second-Order Reactions and Sizing of R-301 -- 6.6.1.3 Selection of Reactor Temperature -- Example 6.6.1.3-1: Temperature Selection for Acrylic Acid Reactor -- 6.6.1.4 CSTR-Energy Balance -- Example 6.6.1.4-1: A Priori Calculation of Heat Load on Acrylic Acid Reactor R-301 -- 6.6.1.5 Autothermal Operation -- 6.6.1.6 Heuristics -- 6.6.2 Isothermal Batch Reactor -- 6.6.2.1 Mass Balance -- 6.6.2.2 Liquid Phase Reactions at Constant Density -- 6.6.2.3 Some Background for Example 6.6.2.3-1 -- Example 6.6.2.3-1: Production of L-Tyrosine-Feed Stock to L-Dopa Plant -- 6.6.2.4 Gas Phase Reactions and Equation of State at Constant Volume.
: Example 3.6.3-1: Heat Duty for Acrylic Acid Reactor R-301 -- Example 3.6.3-2: Feed Temperature Required in Methanol Synthesis -- 3.7 Entropy Balances -- 3.7.1 Macroscopic Entropy Balance -- 3.7.2 Thermodynamic Models -- Example 3.7.2-1: Thermodynamic Models for Membrane Outlet Temperature -- 3.7.3 The Availability and Lost Work -- 3.7.4 Process Efficiency -- 3.7.4.1 Heat Exchanger with Saturated Heat Source -- Example 3.7.4.1-1: Heating Water from 25 to 95° C Using Steam at 0.125 MPa (106° C) -- 3.7.4.2 Distillation -- Example 3.7.4.2-1: Column Efficiency Evaluation for Acylation Reactor Effluent in Ibuprofen Manufacture -- Problems -- 4 Macroscopic Momentum and Mechanical Energy Balances -- 4.1 Momentum Balance -- Example 4.1-1: Force on a U-Bend -- 4.2 Mechanical Energy Balance -- 4.3 Applications to Incompressible Flow Systems -- 4.3.1 Flow of Liquids in Piping Systems -- 4.3.1.1 Flow in Pipes-The Friction Loss Factor -- 4.3.1.2 Sudden Expansion-Calculation of Friction Loss Factor -- 4.3.1.3 Fittings and Valves -- 4.3.1.4 Pump Sizing -- Example 4.3.1.4-1: Power Required for P-301 A/B: Acrylic Acid Plant -- Example 4.3.1.4-2: NPSH Consideration in Pumping o-Dichlorobenzene from Temporary Storage to Process Storage -- Problems -- 5 Completely Mixed Systems-Equipment Considerations -- 5.1 Mixing and Residence Time Distributions-Definitions -- Example 5.1-1: Production of n-Hexyl Glucoside-Residence Time and Reactor Volume -- 5.2 Measurement and Interpretation of Residence Time Distributions -- 5.3 Basic Aspects of Stirred Tank Design -- 5.3.1 Tank Dimensions and Impeller Specifications -- Example 5.3.1-1 Mixer Dimensions for T-303 Alternative Solution -- 5.3.2 Heuristics for Mixing and Agitation -- 5.3.2.1 Power Requirements -- 5.3.2.2 Gas-Liquid Systems -- 5.3.2.3 Liquid-Liquid Systems -- Example 5.3.2.3-1 Power Required for T-303 Alternative.
Abstract : BEnables chemical engineering students to bridge theory and practice/b/ Integrating scientific principles with practical engineering experience, this text enables readers to master the fundamentals of chemical processing and apply their knowledge of such topics as material and energy balances, transport phenomena, reactor design, and separations across a broad range of chemical industries. The author skillfully guides readers step by step through the execution of both chemical process analysis and equipment design. iPrinciples of Chemical Engineering Practice/i is divided into two sections: the Macroscopic View and the Microscopic View. The Macroscopic View examines equipment design and behavior from the vantage point of inlet and outlet conditions. The Microscopic View is focused on the equipment interior resulting from conditions prevailing at the equipment boundaries. As readers progress through the text, they'll learn to master such chemical engineering operations and equipment as:ulliSeparators to divide a mixture into parts with desirable concentrations/liliReactors to produce chemicals with needed properties/liliPressure changers to create favorable equilibrium and rate conditions/liliTemperature changers and heat exchangers to regulate and change the temperature of process streams/li/ul Throughout the book, the author sets forth examples that refer to a detailed simulation of a process for the manufacture of acrylic acid that provides a unifying thread for equipment sizing in context. The manufacture of hexyl glucoside provides a thread for process design and synthesis. Presenting basic thermodynamics, iPrinciples of Chemical Engineering Practice/i enables students in chemical engineering and related disciplines to master and apply the fundamentals and to proceed to more advanced studies in chemical engineering.
Subject : Technology.
Subject : TECHNOLOGY ENGINEERING-- Chemical Biochemical.
Subject : Technology.
Dewey Classification : ‭660‬
LC Classification : ‭TP155‬‭.D425 2013eb‬
NLM classification : ‭TEC009010‬bisacsh
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟