Document Type
|
:
|
BL
|
Record Number
|
:
|
881833
|
Main Entry
|
:
|
Handels, Heinz.
|
Title & Author
|
:
|
Bildverarbeitung Für Die Medizin 2019 : : Algorithmen - Systeme - Anwendungen. Proceedings des Workshops Vom 17. Bis 19. März 2019 in Lübeck.
|
Publication Statement
|
:
|
Wiesbaden :: Vieweg,, 2019.
|
Series Statement
|
:
|
Informatik Aktuell Ser.
|
Page. NO
|
:
|
1 online resource (376 pages)
|
ISBN
|
:
|
3658253266
|
|
:
|
: 9783658253264
|
|
:
|
3658253258
|
|
:
|
9783658253257
|
Notes
|
:
|
2 Materials and methods
|
Contents
|
:
|
Intro; Bildverarbeitung für die Medizin 2019; Sponsoren des Workshops BVM 2019; Beste wissenschaftliche Arbeiten; Beste Präsentationen:; Bestes Poster; Vorwort; Inhaltsverzeichnis; 1 Abstract: Anchor-Constrained Plausibility. A Novel Concept for Assessing Tractography and Reducing False-Positives; References; 2 Automatic Detection of Blood Vessels in Optical Coherence Tomography Scans; 1 Introduction; 2 Materials and methods; 2.1 Methodology; 3 Results; 4 Discussion; References; 3 Prediction of Liver Function Based on DCE-CT; 1 Introduction; 2 Methods; 2.1 Dataset; 2.2 Pre-processing
|
|
:
|
2.1 Generative adversarial networks2.2 StackGAN; 2.3 Pix2pixHD GAN; 3 Results; 3.1 Generating label maps for esophagus; 3.2 Transfer of label maps to esophagus microscopy images; 3.3 Training a U-Net with synthetic image pairs; 4 Discussion; References; 13 Gradient-Based Expanding Spherical Appearance Models for Femoral Model Initialization in MRI; 1 Introduction; 2 Materials and methods; 2.1 GESAM; 2.2 Evaluation; 3 Results; 4 Discussion; References; 14 Deep Segmentation Refinement with Result-Dependent Learning. A Double U-Net for Hip Joint Segmentation in MRI; 1 Introduction
|
|
:
|
2.3 Model architecture and training2.4 Prediction generation and statistical evaluation; 3 Results; 4 Discussion; 5 Conclusion; References; 4 Abstract: Adversarial Examples as Benchmark for Medical Imaging Neural Networks; References; 5 Evaluation of Image Processing Methods for Clinical Applications. Mimicking Clinical Data Using Conditional GANs; 1 Introduction; 2 Materials and methods; 2.1 Style transfer using conditional generative adversarial networks; 2.2 Medical image style transfer; 2.3 Network architecture; 3 Results; 3.1 Data and setup; 3.2 Experiments and results
|
|
:
|
4 Discussion and conclusionReferences; 6 Abstract: Some Investigations on Robustness of Deep Learning in Limited Angle Tomography; References; 7 Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation; References; 8 Deep Multi-Modal Encoder-Decoder Networks for Shape Constrained Segmentation and Joint Representation Learning; 1 Introduction; 2 Materials and methods; 2.1 Joint training; 2.2 Implementation details and experiments; 3 Results; 4 Conclusion; References
|
|
:
|
9 Abstract: Fan-to-Parallel Beam Conversion. Deriving Neural Network Architectures Using Precision LearningReferences; 10 Abstract: Tract Orientation Mapping for Bundle-Specific Tractography; References; 11 Segmentation of Vertebral Metastases in MRI Using an U-Net like Convolutional Neural Network; 1 Introduction; 2 Materials and methods; 2.1 Image data and pre-processing; 2.2 Network architecture; 2.3 Evaluation; 3 Results; 4 Discussion; References; 12 Synthetic Training with Generative Adversarial Networks for Segmentation of Microscopies; 1 Introduction; 2 Materials and methods
|
LC Classification
|
:
|
TA1637-1638TA1634Q33
|
Added Entry
|
:
|
Deserno, Thomas M.
|
|
:
|
Maier, Andreas.
|
|
:
|
Maier-Hein, Klaus Hermann.
|
|
:
|
Palm, Christoph.
|
|
:
|
Tolxdorff, Thomas.
|