رکورد قبلیرکورد بعدی

" Machine learning approaches in cyber security analytics / "


Document Type : BL
Record Number : 890543
Main Entry : Thomas, Tony.
Title & Author : Machine learning approaches in cyber security analytics /\ Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel.
Publication Statement : Singapore :: Springer,, 2020.
Page. NO : 1 online resource (217 pages)
ISBN : 9789811517068
: : 9811517061
: 9789811517051
: 9811517053
Notes : 7.8.1 Eigenfaces of Facial Images
Contents : Intro -- Preface -- About the Book -- Aim and Scope -- Contents -- About the Authors -- 1 Introduction -- 1.1 Cybersecurity Problems -- 1.2 Machine Learning -- 1.3 Implementations of ML Algorithms in the Book -- 1.4 Distance Metrics -- 1.5 Evaluation Metrics in Machine Learning -- 1.6 Mathematical Preliminaries -- 1.6.1 Linear Algebra -- 1.6.2 Metric Spaces -- 1.6.3 Probability -- 1.6.4 Optimization -- 2 Introduction to Machine Learning -- 2.1 Introduction -- 2.1.1 Supervised Machine Learning -- 2.1.2 Unsupervised Machine Learning -- 2.1.3 Semi-supervised Machine Learning
: 2.1.4 Reinforcement Machine Learning -- 2.2 Linear Regression -- 2.3 Polynomial Regression -- 2.4 Logistic Regression -- 2.5 Naive Bayes Classifier -- 2.6 Support Vector Machines (SVM) -- 2.7 Decision Tree -- 2.8 Nearest Neighbor -- 2.9 Clustering -- 2.10 Dimensionality Reduction -- 2.11 Linear Discriminant Analysis (LDA) -- 2.12 Boosting -- 3 Machine Learning and Cybersecurity -- 3.1 Introduction -- 3.2 Spam Detection -- 3.3 Phishing Page Detection -- 3.4 Malware Detection -- 3.5 DoS and DDoS Attack Detection -- 3.6 Anomaly Detection -- 3.7 Biometric Recognition -- 3.8 Software Vulnerabilities
: 4 Support Vector Machines and Malware Detection -- 4.1 Introduction -- 4.2 Malware Detection -- 4.3 Maximizing the Margin and Hyperplane Optimization -- 4.4 Lagrange Multiplier -- 4.5 Kernel Methods -- 4.6 Permission-Based Static Android Malware Detection Using SVM -- 4.6.1 Experimental Results and Discussion -- 4.7 API Call-Based Static Android Malware Detection Using SVM -- 4.7.1 Experimental Results and Discussion -- 4.8 Conclusions and Directions for Research -- 4.8.1 State of the Art -- 5 Clustering and Malware Classification -- 5.1 Introduction -- 5.2 Algorithms Used for Clustering
: 5.3 Feature Extraction -- 5.4 Implementation -- 5.5 K-Means Clustering -- 5.6 Fuzzy C-Means Clustering -- 5.7 Density-Based Clustering -- 5.7.1 Density-Based Spatial Clustering of Applications with Noise (DBSCAN) -- 5.8 Hierarchical Clustering -- 5.9 State of the Art of Clustering Applications -- 5.10 Conclusion -- 6 Nearest Neighbor and Fingerprint Classification -- 6.1 Introduction -- 6.2 NN Regression -- 6.3 K-NN Classification -- 6.4 Preparing Data for K-NN -- 6.5 Locality-Sensitive Hashing (LSH) -- 6.6 Algorithms to Compute Nearest Neighbors -- 6.6.1 Brute Force -- 6.6.2 KD Tree
: 6.6.3 Ball Tree -- 6.7 Radius-Based Nearest Neighbor -- 6.8 Applications of NN in Biometrics -- 6.8.1 Brute Force Classification -- 6.8.2 State of the Art Applications of Nearest Neighbor -- 6.9 Conclusion -- 7 Dimensionality Reduction and Face Recognition -- 7.1 Introduction -- 7.2 About Principal Component Analysis (PCA) -- 7.2.1 PCA Algorithm -- 7.2.2 Capturing the Variability -- 7.2.3 Squared Reconstruction Error -- 7.3 Compressed Sensing -- 7.4 Kernel PCA -- 7.5 Application of PCA in Intrusion Detection -- 7.6 Biometrics -- 7.7 Face Recognition -- 7.8 Application of PCA in Face Recognition
Abstract : This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.
Subject : Computer security.
Subject : Machine learning.
Subject : Computer security.
Subject : Machine learning.
Dewey Classification : ‭005.8‬
LC Classification : ‭QA76.9.A25‬
Added Entry : Emmanuel, Sabu.
: Vijayaraghavan, Athira P.
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟