Document Type
|
:
|
BL
|
Record Number
|
:
|
890606
|
Main Entry
|
:
|
Ng, Wee Leng
|
Title & Author
|
:
|
Nonabsolute integration on measure spaces /\ Wee Leng Ng (NTU, Singapore).
|
Publication Statement
|
:
|
New Jersey :: World Scientific,, 2017.
|
Series Statement
|
:
|
Series in real analysis ;; vol. 14
|
Page. NO
|
:
|
1 online resource
|
ISBN
|
:
|
9789813221970
|
|
:
|
: 9813221976
|
|
:
|
9789813221963
|
|
:
|
9813221968
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references and index.
|
Contents
|
:
|
Contents -- Foreword -- Preface -- Synopsis -- 1. A Nonabsolute Integral on Measure Spaces -- 1.1 Preliminaries -- 1.2 Existence of a Division and the H-Integral -- 1.3 Simple Properties of the H-Integral -- 2. The Absolute H-Integral and the McShane-Type Integrals -- 2.1 The Absolute H-Integral and the M-Integral -- 2.2 The H-Integral and the Lebesgue Integral -- 2.3 The Davies Integral and the Daviesâ#x80;#x93;McShane Integral -- 3. Further Results of the H-Integral -- 3.1 A Necessary and Sufficient Condition for H-Integrability
|
|
:
|
3.2 Generalised Absolute Continuity and Equiintegrability3.3 The Controlled Convergence Theorem -- 4. The Radonâ#x80;#x93;Nikodym Theorem for the H-Integral -- 4.1 The Main Theorem -- 4.2 Descriptive Definition of the H-Integral -- 4.3 Henstock Integration in the Euclidean Space -- 5. Harnack Extension and Convergence Theorems for the H-Integral -- 5.1 The H-Integral on Metric Spaces -- 5.2 Harnack Extension for the H-Integral -- 5.3 The Category Argument -- 5.4 An Improved Version of the Controlled Convergence Theorem -- Bibliography -- Glossary
|
Subject
|
:
|
Algebraic spaces.
|
Subject
|
:
|
Henstock-Kurzweil integral.
|
Subject
|
:
|
Integrals, Generalized.
|
Subject
|
:
|
Integrals.
|
Subject
|
:
|
Numerical integration.
|
Subject
|
:
|
Algebraic spaces.
|
Subject
|
:
|
Henstock-Kurzweil integral.
|
Subject
|
:
|
Integrals, Generalized.
|
Subject
|
:
|
Integrals.
|
Subject
|
:
|
MATHEMATICS-- Calculus.
|
Subject
|
:
|
MATHEMATICS-- Mathematical Analysis.
|
Subject
|
:
|
Numerical integration.
|
Dewey Classification
|
:
|
515/.43
|
LC Classification
|
:
|
QA308.N4 2017
|