|
" Compact and fast machine learning accelerator for IoT devices / "
Hantao Huang and Hao Yu.
Document Type
|
:
|
BL
|
Record Number
|
:
|
891380
|
Main Entry
|
:
|
Huang, Hantao
|
Title & Author
|
:
|
Compact and fast machine learning accelerator for IoT devices /\ Hantao Huang and Hao Yu.
|
Publication Statement
|
:
|
Singapore :: Springer,, 2019.
|
Series Statement
|
:
|
Computer architecture and design methodologies
|
Page. NO
|
:
|
1 online resource
|
ISBN
|
:
|
9789811333231
|
|
:
|
: 9789811333248
|
|
:
|
: 9811333238
|
|
:
|
: 9811333246
|
|
:
|
9789811333224
|
|
:
|
981133322X
|
Contents
|
:
|
Computing on Edge Devices in Internet-of-things (IoT) -- The Rise of Machine Learning in IoT system -- Least-squares-solver for Shadow Neural Network -- Tensor-solver for Deep Neural Network -- Distributed-solver for Networked Neural Network -- Conclusion.
|
Abstract
|
:
|
This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.
|
Subject
|
:
|
Internet of things.
|
Subject
|
:
|
Machine learning.
|
Subject
|
:
|
COMPUTERS-- General.
|
Subject
|
:
|
Internet of things.
|
Subject
|
:
|
Machine learning.
|
Dewey Classification
|
:
|
006.31
|
LC Classification
|
:
|
Q325.5.H83 2019
|
Added Entry
|
:
|
Yu, Hao, (Electrical engineer)
|
| |