رکورد قبلیرکورد بعدی

" Impacts of oxygen vacancies in titanium dioxide-supported metal nanoparticles in the oxygen reduction reaction and the carbon electrooxidation reaction "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 898238
Doc. No : TL0kj7x3qk
Main Entry : Pan, Heng
Title & Author : Impacts of oxygen vacancies in titanium dioxide-supported metal nanoparticles in the oxygen reduction reaction and the carbon electrooxidation reaction\ Sweeney, SamanthaChen, Shaowei
Date : 2018
student score : 2018
Abstract : With the current energy demands, the burning of fossil fuels is causing many issues, such as global warming, therefore many researchers are looking into replacing the current methods with electrical energy storage devices. One such device is the fuel cell, where the oxidized fuel provides energy to power things, such as cars. However, the reaction in the cathode compartment, the oxygen reduction reaction (ORR), has driven up the price of the fuel cell due to the high catalyst loading needed to achieve efficiencies suitable for industry. In addition, the most common commercial catalyst is platinum nanoparticles deposited on activated carbon nanoparticles. Platinum is rare and expensive and the major contributor to the high cost. The platinum nanoparticles can also detach, move, or change size dependent on reaction conditions. Finally, platinum is easily poisoned by carbon monoxide. Improving platinum’s tolerance for CO will be discussed in chapter 5. The activated carbon nanoparticles are not stable at the operation voltage of fuel cells and therefore constant catalyst replacement lowers their recyclability and shelf-life. Therefore, an alternative to this system is needed. Transition-metal oxides offer an interesting alternative to the activated carbon because of their stability. TiO2 in particular is abundant and relatively inexpensive. However, due to its semiconducting properties, it has poor activity for electrochemical reactions. The activity can be enhanced with the deposition of nanoparticles, specifically gold due to the strong metal support interactions. However, this is still not sufficient to replace platinum. The creation of oxygen vacancies in titanium dioxide can influence the binding energy of oxygen and the activity of the overall nanocomposite. Their impact is discussed in chapters 2 and 3. Finally, the activity can be altered by doping the TiO2 and in chapter 4 nitrogen doping will be discussed. Overall, these defects will be explored throughout this dissertation and how the kinetics of electrochemical reactions will be affected.
Added Entry : Sweeney, Samantha
Added Entry : UC Santa Cruz
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
0kj7x3qk_459985.pdf
0kj7x3qk.pdf
پایان نامه لاتین
متن
application/pdf
5.31 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟