رکورد قبلیرکورد بعدی

" Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode "


Document Type : AL
Record Number : 900562
Doc. No : LA4p7923z6
Title & Author : Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode [Article]\ Rong, XLiu, JHu, ELiu, YWang, YWu, JYu, XPage, KHu, YSYang, WLi, HYang, XQChen, LHuang, X
Date : 2018
Title of Periodical : Lawrence Berkeley National Laboratory
Abstract : © 2017 Elsevier Inc. Anionic redox reaction (ARR) in lithium- and sodium-ion batteries is under hot discussion, mainly regarding how oxygen anion participates and to what extent oxygen can be reversibly oxidized and reduced. Here, a P3-type Na0.6[Li0.2Mn0.8]O2 with reversible capacity from pure ARR was studied. The interlayer O-O distance (peroxo-like O-O dimer, 2.506(3) Å), associated with oxidization of oxygen anions, was directly detected by using a neutron total scattering technique. Different from Li2RuO3 or Li2IrO3 with strong metal-oxygen (M-O) bonding, for P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors might play an even more important role in stabilizing the oxidized species, as both Li and Mn ions are immobile in the structure and thus may inhibit the irreversible transformation of the oxidized species to O2 gas. Utilization of anionic redox reaction (ARR) on oxygen has been considered as an effective way to promote the charge-discharge capacity of the layered oxide cathodes for lithium- or sodium-ion batteries. The detailed mechanism of ARR, in particular how crystal structure affects and coordinates with the ARR, is not yet well understood. In the present work, a combination of X-ray and neutron total scattering measurements has been performed to study the structure of the prototype P3-type layered Na0.6[Li0.2Mn0.8]O2 with pure ARR. Unique structural characteristics, rather than prevailing knowledge of covalency of metal-oxygen, enable the stabilization of the crystal structure of Na0.6[Li0.2Mn0.8]O2 along with the ARR. This work suggests that reversible ARR can be manipulated by proper structure designs, thus to achieve high lithium or sodium storage in layered oxide cathodes. For P3-type Na0.6[Li0.2Mn0.8]O2 with relatively weak Mn-O covalent bonding, crystal structure factors play an important role in stabilizing the oxidized species, inhibiting the irreversible transformation of the oxidized species to O2 gas. The finding is important for better design of layered oxide positive materials with higher reversible capacity via the introduction of a reversible anionic redox reaction.
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
4p7923z6_443389.pdf
4p7923z6.pdf
مقاله لاتین
متن
application/pdf
1.44 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟