This page uses JavaScript and requires a JavaScript enabled browser.Your browser is not JavaScript enabled.
مرکز و کتابخانه مطالعات اسلامی به زبان های اروپایی
منو
درگاههای جستجو
مدارک
جستجوی پیشرفته
مرور
جستجو در سایر کتابخانه ها
مستندات
جستجوی پیشرفته
مرور
منابع دیجیتال
تمام متن
اصطلاحنامه
درختواره
پرسش و پاسخ
سوالات متداول
پرسش از کتابدار
پیگیری پرسش
ورود
ثبت نام
راهنما
خطا
رکورد قبلی
رکورد بعدی
"
Modeling the Visual Word Form Area Using a Deep Convolutional Neural Network
"
Wiraatmadja, Sandy
Document Type
:
Latin Dissertation
Language of Document
:
English
Record Number
:
904435
Doc. No
:
TL95t3w755
Main Entry
:
Wiraatmadja, Sandy
Title & Author
:
Modeling the Visual Word Form Area Using a Deep Convolutional Neural Network\ Wiraatmadja, Sandy
College
:
UC San Diego
Date
:
2015
student score
:
2015
Abstract
:
The visual word form area (VWFA) is a region of the cortex, located in the left fusiform gyrus, that appears to be a waystation in the reading pathway. The discovery of the VWFA occurred in the late twentieth century with the advancement in functional magnetic resonance imaging (fMRI). Since then, there has been an increased number of neuroimaging studies to understand the VWFA further for its properties. Because it is still relatively recent, there are disagreements in some properties of the VWFA. One such disagreement is regarding whether or not the VWFA is highly more selective for whole real words than pseudowords. A recent study provided evidences that the neurons in the VWFA are tuned to be more selective to real words. This contradicts past studies which hypothesize that the VWFA is tuned to sublexical structure of visual words, and therefore has no preference for real words over pseudowords. The goal of this project is to develop a realistic model of the VWFA by training a deep convolutional neural network to map printed words to their labels. We then analyzed this network to see if we could observe the same selectivity the recent study found for whole real words. On the test set, the network that we trained from scratch is able to achieve an accuracy of 98.5%. Furthermore, we notice the same trends in our network, as in the results of the study, that show how the VWFA is highly selective for whole real words
Added Entry
:
UC San Diego
https://lib.clisel.com/site/catalogue/904435
کپی لینک
پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
95t3w755_11768.pdf
95t3w755.pdf
پایان نامه لاتین
متن
application/pdf
2.00 MB
85
85
نمایش
نظرسنجی
نظرسنجی منابع دیجیتال
1 - آیا از کیفیت منابع دیجیتال راضی هستید؟
X
کم
متوسط
زیاد
ذخیره
پاک کن