رکورد قبلیرکورد بعدی

" Training discriminative computer vision models with weak supervision "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 904585
Doc. No : TL0hm7t7j3
Main Entry : Babenko, Boris
Title & Author : Training discriminative computer vision models with weak supervision\ Babenko, Boris
College : UC San Diego
Date : 2012
student score : 2012
Abstract : Statistical machine learning techniques have transformed computer vision research in the last two decades, and have led to many breakthroughs in object detection, recognition and tracking. Such data-driven methods extrapolate rules from a set of labeled examples, freeing us from designing and tuning a system by hand for a particular application or domain. Discriminative learning methods, which directly learn to differentiate categories of data rather than modeling the data itself, have been shown to be particularly effective. However, the requirement of a large set of labeled examples becomes prohibitively expensive, especially if we consider scaling to a wide range of domains and applications. In this dissertation we explore weakly supervised methods of training discriminative models for a number of computer vision applications. These methods require weaker forms of annotation that are easier and/or cheaper to obtain, and can learn in situations where the ground truth is inherently ambiguous. Many of the algorithms in this dissertation are based on a particular form of weakly supervised learning called Multiple Instance Learning (MIL). Our final contribution is a theoretical analysis of MIL that takes into account the characteristics of applications in computer vision and related areas
Added Entry : UC San Diego
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
0hm7t7j3_12063.pdf
0hm7t7j3.pdf
پایان نامه لاتین
متن
application/pdf
11.62 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟