رکورد قبلیرکورد بعدی

" Investigation of the roles of Coq8p, a putative kinase, and alternate ring precursors in coenzyme Q biosynthesis "


Document Type : Latin Dissertation
Language of Document : English
Record Number : 905172
Doc. No : TL89b7p4mr
Main Entry : Xie, Letian
Title & Author : Investigation of the roles of Coq8p, a putative kinase, and alternate ring precursors in coenzyme Q biosynthesis\ Xie, LetianClarke, Catherine F
College : UCLA
Date : 2014
student score : 2014
Abstract : Coenzyme Q (ubiquinone or Q) is an essential redox-active, polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. Eleven genes products, Coq1-Coq9, Yah1 and Arh1, are required for Q biosynthesis in yeast Saccharomyces cerevisiae. Chapter 2 details the investigation of the biological function of Coq8 and its human homolog ADCK3. Expression of ADCK3 harboring an amino-terminal yeast mitochondrial leader sequence successfully rescued growth of coq8 mutants on non-fermentable carbon source, partially restored Q biosynthesis and the phosphorylation states of Coq3, Coq5, and Coq7. Chapter 3 investigates the use of over-expression of COQ8 as a tool to study Q biosynthesis pathway in S. cerevisiae. Over-expression of the Coq8 protein restores the steady state levels of the unstable Coq proteins. This stabilization results in the accumulation of several novel Q6 biosynthetic intermediates. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoci acid is used as a ring precursor in Q biosynthesis. Chapter 4 studies the use of para-aminobenzoic acid, and resveratrol as alternative aromatic ring precursors in Q biosynthesis in E. coli, S. cerevisiae, mouse and human cells. In contrast to S. cerevisiae, neither E. coli nor mammalian cells could utilize pABA as ring precursors in Q biosynthesis. However, E. coli cells labeled with 13C6-pABA generated several novel N-containing early intermediates, suggesting UbiA, UbiD,X, and Ubil are capable of using pABA as substrates. E. coli, S. cerevisiae, human and mouse cells cultured in the presence of 13C6-resveratrol were able to synthesize 13C6-Q. Thus, future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q.
Added Entry : Clarke, Catherine F
Added Entry : UCLA
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
89b7p4mr_13235.pdf
89b7p4mr.pdf
پایان نامه لاتین
متن
application/pdf
61.95 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟