رکورد قبلیرکورد بعدی

" Logic regression-derived algorithms for syndromic management of vaginal infections. "


Document Type : AL
Record Number : 907000
Doc. No : LA4798x8px
Title & Author : Logic regression-derived algorithms for syndromic management of vaginal infections. [Article]\ Rathod, Sujit; Li, Tan; Klausner, Jeffrey; Hubbard, Alan; REINGOLD, Arthur L.; Madhivanan, Purnima
Date : 2015
Title of Periodical : UC Berkeley
Abstract : BACKGROUND: Syndromic management of vaginal infections is known to have poor diagnostic accuracy. Logic regression is a machine-learning procedure which allows for the identification of combinations of variables to predict an outcome, such as the presence of a vaginal infection. METHODS: We used logic regression to develop predictive models for syndromic management of vaginal infection among symptomatic, reproductive-age women in south India. We assessed the positive predictive values, negative predictive values, sensitivities and specificities of the logic regression procedure and a standard WHO algorithm against laboratory-confirmed diagnoses of two conditions: metronidazole-sensitive vaginitis [bacterial vaginosis or trichomoniasis (BV/TV)], and vulvovaginal candidiasis (VVC). RESULTS: The logic regression procedure created algorithms which had a mean positive predictive value of 61 % and negative predictive value of 80 % for management of BV/TV, and a mean positive predictive value of 26 % and negative predictive value of 98 % for management of VVC. The results using the WHO algorithm were similarly mixed. CONCLUSIONS: The logic regression procedure identified the most predictive measures for management of vaginal infections from the candidate clinical and laboratory measures. However, the procedure provided further evidence as to the limits of syndromic management for vaginal infections using currently available clinical measures.
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
4798x8px_1406.pdf
4798x8px.pdf
مقاله لاتین
متن
application/pdf
671.27 KB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟