رکورد قبلیرکورد بعدی

" The PERSIANN family of global satellite precipitation data: "


Document Type : AL
Record Number : 910273
Doc. No : LA2z072568
Title & Author : The PERSIANN family of global satellite precipitation data:. A review and evaluation of products [Article]\ Nguyen, P; Ombadi, M; Sorooshian, S; Hsu, K; AghaKouchak, A; Braithwaite, D; Ashouri, H; Rose Thorstensen, A
Date : 2018
Title of Periodical : UC Irvine
Abstract : © 2018 Author(s). Over the past 2 decades, a wide range of studies have incorporated Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) products. Currently, PERSIANN offers several precipitation products based on different algorithms available at various spatial and temporal scales, namely PERSIANN, PERSIANN-CCS, and PERSIANN-CDR. The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. Secondly, we offer an evaluation of the available operational products over the contiguous US (CONUS) at different spatial and temporal scales using Climate Prediction Center (CPC) unified gauge-based analysis as a benchmark. Due to limitations of the baseline dataset (CPC), daily scale is the finest temporal scale used for the evaluation over CONUS. Additionally, we provide a comparison of the available products at a quasi-global scale. Finally, we highlight the strengths and limitations of the PERSIANN products and briefly discuss expected future developments.
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
2z072568_9175.pdf
2z072568.pdf
مقاله لاتین
متن
application/pdf
8.13 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟