رکورد قبلیرکورد بعدی

" Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework "


Document Type : AL
Record Number : 911954
Doc. No : LA6b9364md
Title & Author : Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework [Article]\ Rahnamay Naeini, M; Yang, T; Sadegh, M; AghaKouchak, A; Hsu, KL; Sorooshian, S; Duan, Q; Lei, X
Date : 2018
Title of Periodical : UC Irvine
Abstract : © 2018 Elsevier Ltd Simplicity and flexibility of meta-heuristic optimization algorithms have attracted lots of attention in the field of optimization. Different optimization methods, however, hold algorithm-specific strengths and limitations, and selecting the best-performing algorithm for a specific problem is a tedious task. We introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme. SC-SAHEL explores performance of different EAs, such as the capability to escape local attractions, speed, convergence, etc., during population evolution as each individual EA suits differently to various response surfaces. The SC-SAHEL algorithm is benchmarked over 29 conceptual test functions, and a real-world hydropower reservoir model case study. Results show that the hybrid SC-SAHEL algorithm is rigorous and effective in finding global optimum for a majority of test cases, and that it is computationally efficient in comparison to algorithms with individual EA.
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
6b9364md_13338.pdf
6b9364md.pdf
مقاله لاتین
متن
application/pdf
4.90 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟