رکورد قبلیرکورد بعدی

" The Squeaky Wheel: "


Document Type : AL
Record Number : 913209
Doc. No : LA3z1242jb
Title & Author : The Squeaky Wheel:. Machine learning for anomaly detection in subjective thermal comfort votes [Article]\ Wang, Zhe; Parkinson, Thomas; Li, Peixian; Lin, Borong; Hong, Tianzhen
Date : 2019
Title of Periodical : UC Berkeley
Abstract : Anomalous patterns in subjective votes can bias thermal comfort models built using data-driven approaches. A stochastic-based two-step framework to detect outliers in subjective thermal comfort data is proposed to address this problem. The anomaly detection technique involves defining similar conditions using a k-Nearest Neighbor (KNN) method and then quantifying the dissimilarity of the occupants’ votes from their peers under similar thermal conditions through a Multivariate Gaussian approach. This framework is used to detect outliers in the ASHRAE Global Thermal Comfort Database I & II. The resulting anomaly-free dataset produced more robust comfort models avoiding dubious predictions. The proposed method has been proven to effectively distinguish outliers from inter-individual variabilities in thermal demand. The proposed anomaly detection framework could easily be applied to other applications with different variables or subjective metrics. Such a tool holds great promise for use in the development of occupancy responsive controls for automated building HVAC systems.
کپی لینک

پیشنهاد خرید
پیوستها
عنوان :
نام فایل :
نوع عام محتوا :
نوع ماده :
فرمت :
سایز :
عرض :
طول :
3z1242jb_16336.pdf
3z1242jb.pdf
مقاله لاتین
متن
application/pdf
1.50 MB
85
85
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟