|
" The joy of mathematics : "
by Theoni Pappas.
Document Type
|
:
|
BL
|
Record Number
|
:
|
948309
|
Doc. No
|
:
|
b702679
|
Main Entry
|
:
|
Pappas, Theoni.
|
Title & Author
|
:
|
The joy of mathematics : : discovering mathematics all around you /\ by Theoni Pappas.
|
Edition Statement
|
:
|
Rev. ed.
|
Publication Statement
|
:
|
San Carlos, CA :: Wide World Pub./Tetra,, 1989.
|
Page. NO
|
:
|
240 pages :: illustrations ;; 22 cm
|
ISBN
|
:
|
0933174659
|
|
:
|
: 9780933174658
|
Notes
|
:
|
Includes index.
|
Contents
|
:
|
The evolution of base ten -- The Pythagorean Theorem -- Optical illusions and computer graphics -- The cycloid -- A triangle to a square problem -- Halley's comet -- The impossible tribar -- The quipu -- Calligraphy, typography and mathematics -- The wheat and the chessboard problem -- Probability and [pi] -- Earthquakes and logarithms -- Parabolic ceiling and the Capitol -- Computers, counting and electricity -- Topo -- a mathematical game -- Fibonacci sequence -- A twist to the Pythagorean Theorem -- Trinity of rings-a topological problem -- Anatomy and the golden section -- Catenary and parabolic curves -- The T problem -- Thales and the Great Pyramid -- Hotel Infinity -- Crystals -- nature's polyhedra -- Pascal's triangle -- Mathematics of the billiard table -- The electron's path and geometry -- The Moebius strip and the Klein bottle -- A Sam Loyd puzzle -- Mathematics and paperfolding -- The Fibonacci trick -- The evolution of mathematical symbols -- Some geometric designs of Leonardo da Vinci -- Ten historic dates -- Napoleon's theorem -- Lewis Carroll-the mathematician -- Counting on fingers -- A twist to the Moebius strip -- Heron's theorem -- A look at Gothic architecture -- Napier's bones -- Art and projective geometry -- Infinity and the circle -- The amazing track -- Persian horses and Sam Loyd's puzzle -- The lunes -- Hexagons in nature -- The googol and the googolplex -- A magic cube -- Fractals-real or imaginary -- Nanoseconds-measuring time on computers -- Geodesic dome of Leonardo da Vinci -- Magic squares -- A special "magic" square -- The Chinese triangle -- The death of Archimedes -- A non-Euclidean world -- Cannon balls and pyramids -- Conchoid of Nicomedes -- The trefoil knot -- The magic square of Benjamin Franklin -- Irrational numbers and the Pythagorean Theorem -- Prime numbers -- The golden rectangle -- Making a tri-tetra flexagon -- Finding infinity in small places -- The five Platonic solids -- The pyramid method-making magic squares -- The Kepler-Poinsot solids -- The false spiral optical illusion -- The icosahedron and the golden rectangle -- Zeno's paradox-Achilles and the tortoise -- The mystic hexagram -- The penny puzzle -- Tessellations -- Diophantus' riddle -- The Konigsberg Bridge problem -- Networks -- Aztec calendar -- The impossible trio-three ancient construction problems -- Ancient Tibetan magic square -- Perimeter, area, and infinite series -- The checkerboard problem -- Pascal's calculator -- Isaac Newton and calculus -- Japanese abacus -- The proof of 1=2 -- The symmetry of crystals -- The mathematics of music -- Numerical palindromes -- The unexpected exam paradox -- Babylonian cuneiform text -- The spiral of Archimedes -- The evolution of mathematical ideas -- The four color map problem takes a turn -- Art and dynamic symmetry -- Transfinite numbers -- Logic problem -- The snowflake curve -- Zero-when and where -- Pappus' theorem and the nine coin puzzle -- The Japanese magic circle & Gauss' problem -- Spherical dome and water distillation -- The helix -- Magic "line" -- Mathematics and architecture -- History of optical illusions -- Trisecting the equilateral triangle -- The wood, water, and grain problem -- Charles Babbage, the Leonardo da Vinci of computers -- Mathematics and Moslem art -- A Chinese magic square -- Infinity and limits -- Counterfeit coin puzzle -- The Parthenon-an optical and mathematical design -- Probability and Pascal's triangle -- The involute curve -- The pentagon, the pentagram, and the golden triangle -- Three men facing a wall problem -- Geometric fallacy and the Fibonacci sequence -- Mazes -- Chinese "checkerboards" -- Conic sections -- The screw of Archimedes -- Irradiation optical illusion -- The Pythagorean Theorem and President Garfield -- The wheel paradox of Aristotole & Galileo's solution -- Stonehenge -- How many dimensions are there? -- Computers and dimensions -- The "double" Moebius strip -- Paradoxical curve-the space-filling curve -- The abacus -- Mathematics and weaving -- Mersenne's number -- The tangram puzzle -- Infinite vs finite -- Triangular, square, and pentagonal numbers -- Eratosthenes measures the Earth -- Projective geometry and linear programming -- The spider and the fly -- Mathematics and soap bubbles -- The coin paradox -- Hexaminoes -- The Fibonacci sequence and nature -- The monkey and the coconuts -- Spiders and spirals.
|
Abstract
|
:
|
Explores the many relationships of methematics and facets of everyday life.
|
Subject
|
:
|
Mathematics, Popular works.
|
Subject
|
:
|
Mathematics.
|
Dewey Classification
|
:
|
510
|
LC Classification
|
:
|
QA93.P365 1989
|
| |