رکورد قبلیرکورد بعدی

" Quantile regression / "


Document Type : BL
Record Number : 950107
Doc. No : b704477
Main Entry : Hao, Lingxin.
Title & Author : Quantile regression /\ Lingxin Hao, Daniel Q. Naiman.
Publication Statement : Thousand Oaks, Calif. :: Sage Publications,, ©2007.
Series Statement : Quantitative applications in the social sciences ;; 149
Page. NO : 1 online resource (ix, 126 pages) :: illustrations.
ISBN : 1412926289
: : 1412985552
: : 1441628339
: : 1452210764
: : 9781412926287
: : 9781412985550
: : 9781441628336
: : 9781452210766
: 9781412926287
Bibliographies/Indexes : Includes bibliographical references (pages 121-122) and index.
Contents : Introduction -- Quantiles and quantile functions -- Quantile-regression model and estimation -- Quantile-regression inference -- Interpretation of quantile-regression estimates -- Interpretation of monotone-transformed QRM -- Application to income inequality in 1991 and 2001.
Abstract : 'Quantile Regression' establishes the seldom recognised link between inequality studies and quantile regression models. Though separate methodological literatures exist for each subject matter, the authors explore the natural connections between this increasingly sought-after tool and research topics in the social sciences.
Subject : Regression analysis.
Subject : Social sciences-- Statistical methods.
Subject : Analyse de régression.
Subject : Sciences sociales-- Méthodes statistiques.
Subject : MATHEMATICS-- Probability Statistics-- Regression Analysis.
Subject : Quantil
Subject : Regression (Statistics)
Subject : Regression analysis.
Subject : Regressionsanalyse
Subject : Social sciences-- Statistical methods.
Subject : Social sciences.
Subject : Statistical analysis.
Subject : Ongelijkheden.
Subject : Regressieanalyse.
Subject : Verdelingen (statistiek)
Dewey Classification : ‭519.5/36‬
LC Classification : ‭HA31.3‬‭.H36 2007eb‬
NLM classification : ‭70.03‬bcl
: ‭MR 2100‬rvk
: ‭QH 234‬rvk
Added Entry : Naiman, Daniel Q.
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟