Document Type
|
:
|
BL
|
Record Number
|
:
|
951342
|
Doc. No
|
:
|
b705712
|
Main Entry
|
:
|
Dolgachev, I., (Igor V.)
|
Title & Author
|
:
|
Lectures on Invariant Theory /\ Igor Dolgachev.
|
Publication Statement
|
:
|
Cambridge :: Cambridge University Press,, 2003.
|
Series Statement
|
:
|
London Mathematical Society Lecture Note Series ;; no. 296
|
Page. NO
|
:
|
1 online resource (236 pages)
|
ISBN
|
:
|
0511615434
|
|
:
|
: 0521525489
|
|
:
|
: 1107362261
|
|
:
|
: 1107367174
|
|
:
|
: 9780511615436
|
|
:
|
: 9780521525480
|
|
:
|
: 9781107362260
|
|
:
|
: 9781107367173
|
Notes
|
:
|
Title from publishers bibliographic system (viewed 22 Dec 2011).
|
Bibliographies/Indexes
|
:
|
Includes bibliographical references and index.
|
Contents
|
:
|
Cover -- Title -- Copyright -- Dedication -- Preface -- Introduction -- 1 The symbolic method -- 1.1 First examples -- 1.2 Polarization and restitution -- 1.3 Bracket functions -- Bibliographical notes -- Exercises -- 2 The First Fundamental Theorem -- 2.1 The omega-operator -- 2.2 The proof -- 2.3 Grassmann varieties -- 2.4 The straightening algorithm -- Bibliographical notes -- Exercises -- 3 Reductive algebraic groups -- 3.1 The Gordan-Hilbert Theorem -- 3.2 The unitary trick -- 3.3 Affine algebraic groups -- 3.4 Nagata's Theorem -- Bibliographical notes -- Exercises.
|
|
:
|
4 Hilbert's Fourteenth Problem -- 4.1 The problem -- 4.2 The Weitzenb ock Theorem -- 4.3 Nagata's counterexample -- Bibliographical notes -- Exercises -- 5 Algebra of covariants -- 5.1 Examples of covariants -- 5.2 Covariants of an action -- 5.3 Linear representations of reductive groups -- 5.4 Dominant weights -- 5.5 The Cayley-Sylvester formula -- 5.6 Standard tableaux again -- Bibliographical notes -- Exercises -- 6 Quotients -- 6.1 Categorical and geometric quotients -- 6.2 Examples -- 6.3 Rational quotients -- Bibliographical notes -- Exercises -- 7 Linearization of actions.
|
|
:
|
7.1 Linearized line bundles -- 7.2 The existence of linearization -- 7.3 Linearization of an action -- Bibliographical notes -- Exercises -- 8 Stability -- 8.1 Stable points -- 8.2 The existence of a quotient -- 8.3 Examples -- Bibliographical notes -- Exercises -- 9 Numerical criterion of stability -- 9.1 The function æ(x, .) -- 9.2 The numerical criterion -- 9.3 The proof -- 9.4 The weight polytope -- 9.5 Kempf-stability -- Bibliographical notes -- Exercises -- 10 Projective hypersurfaces -- 10.1 Nonsingular hypersurfaces -- 10.2 Binary forms -- 10.3 Plane cubics -- 10.4 Cubic surfaces.
|
|
:
|
Bibliographical notes -- Exercises -- 11 Configurations of linear subspaces -- 11.1 Stable configurations -- 11.2 Points in Pn -- 11.3 Lines in P3 -- Bibliographical notes -- Exercises -- 12 Toric varieties -- 12.1 Actions of a torus on an affine space -- 12.2 Fans -- 12.3 Examples -- Bibliographical notes -- Exercises -- Bibliography -- Index of Notation -- Index.
|
Abstract
|
:
|
This 2003 book is a brief introduction to algebraic and geometric invariant theory with numerous examples and exercises.
|
Subject
|
:
|
Geometry, Algebraic.
|
Subject
|
:
|
Geometry, Differential.
|
Subject
|
:
|
Invariants.
|
Subject
|
:
|
Linear algebraic groups.
|
Subject
|
:
|
Geometry, Algebraic.
|
Subject
|
:
|
Geometry, Differential.
|
Subject
|
:
|
Invariants.
|
Subject
|
:
|
Linear algebraic groups.
|
Subject
|
:
|
MATHEMATICS-- Algebra-- Linear.
|
Dewey Classification
|
:
|
512.5
|
LC Classification
|
:
|
QA201 .D65 2002
|