رکورد قبلیرکورد بعدی

" The new physical optics notebook : "


Document Type : BL
Record Number : 979438
Doc. No : b733808
Main Entry : Reynolds, George O.
Title & Author : The new physical optics notebook : : tutorials in Fourier optics /\ George O. Reynolds, John B. DeVelis, George B. Parrent, Jr., Brian J. Thompson.
Publication Statement : Bellingham, Wash., USA :: SPIE Optical Engineering Press,, ©1989.
Page. NO : xvi, 568 pages :: illustrations ;; 26 cm
ISBN : 0819401307
: : 0819481033
: : 9780819401304
: : 9780819481030
: 0819401307
Notes : "Copublished by SPIE--The International Society for Optical Engineering and American Institute of Physics."
: Revised edition of: Physical optics notebook / George B. Parrent, Brian J. Thompson.
Bibliographies/Indexes : Includes bibliographical references and index.
Contents : Huygens' principle -- Fourier transforms -- Array theorem -- Image formation : the impulse response -- Image formation in terms of the impulse response -- Resolution in terms of the impulse response -- Image formation : the transfer function -- Image formation in terms of the transfer function -- Fresnel diffraction -- Heuristic introduction to partially coherent light -- Elementary theory of optical coherence, part 1 -- Image formation with coherent light -- Coherent imaging : resolution -- Coherent imaging : examples -- Coherence theory solution to the pinhole camera -- Diffraction and interference with partially coherent light -- Elementary theory of optical coherence, part 2 -- Elementary theory of optical coherence, part 3 -- Selected criteria for image analysis -- Photographic films -- Sources of coherent noise and their reduction -- Division of wavefront interferometry -- Division of amplitude interferometry -- Multiple-beam interference -- Introduction to holography -- Holographic interferometry -- Applications of holography -- Communication theory techniques in optics -- Analog optical computing : experimental Fourier analysis -- Analog optical computing : Fourier synthesis utilizing amplitude filters -- Analog optical computing : Fourier synthesis utilizing amplitude and/or phase filters -- Analog optical computing : additional mathematical operations -- Analog optical computing : optical correlation techniques -- Optically modulated imagery -- Phase contrast imaging -- Partially filled, synthetic aperture imaging systems : incoherent illumination -- Partially filled, synthetic aperture imaging systems : coherent illumination -- Parametric design of a conceptual high-resolution optical lithographic printer.
: Preface -- Chapter 1. Huygens' principle. 1.1. Light as a wave disturbance; 1.2. Wave propagation; References -- Chapter 2. Fourier transforms. 2.1. Introduction; 2.2. Diffraction problems; 2.3. Conclusion -- Chapter 3. Array theorem. 3.1. Introduction; 3.2. The array theorem; 3.3. Applications of array theorem; 3.4. Some examples; 3.5. Appendix: The convolution theorem; Reference -- Chapter 4. Image formation: the impulse response. 4.1. Introduction; 4.2. Impulse response; 4.3. Image of a point object; 4.4. Conclusions; 4.5. Appendix: The relationship to geometrical optics -- Chapter 5 Image formation in terms of the impulse response. 5.1. Introduction; 5.2. Impulse response for a cylindrical lens; 5.3. Image of a bar; 5.4. Image of two bars; 5.5. Image of three bars; 5.6. Experimental illustrations; Reference -- Chapter 6. Resolution in terms of the impulse response. 6.1. Introduction; 6.2. Two-point resolution; 6.3. Image of two points: one dimensional; 6.4. Image of two points: two dimensional; 6.5. Conclusions -- Chapter 7. Image formation: the transfer function. 7.1 Introduction; 7.2 Image of a cosinusoidal intensity distribution; 7.3 Periodic real object; 7.4 The transfer function and the aperture function; 7.5 Conclusion -- Chapter 8. Image formation in terms of the transfer function. 8.1. Introduction; 8.2. The transfer function; 8.3. Image of a Ronchi ruling; 8.4. Defocused lens; 8.5. Appendix: Fourier transform of a Dirac comb.
: Chapter 15. Coherence theory solution to the pinhole camera. 15.1. Introduction; 15.2. Pinhole camera with incoherent illumination; 15.3. Pinhole camera with coherent illumination; 15.4. Conclusions; 15.5. Appendix: Transfer function of the pinhole camera; References -- Chapter 16. Diffraction and interference with partially coherent light. 16.1. Introduction; 16.2. Diffraction with partially coherent light; 16.3. One-dimensional apertures; 16.4. Two-dimensional apertures; 16.5. Multiple-beam interference with partially coherent light; 16.6. Analysis of a partially coherently illuminated array; References -- Chapter 17. Elementary theory of optical coherence: Part II. 17.1. Examples of spatial coherence effects in optical instruments; References -- Chapter 18. Elementary theory of optical coherence: Part III. 18.1. An empirical approach for use in optical instrument design; 18.2. Coherent imaging systems; 18.3. Temporal coherence considerations in optical system design; 18.4. Summary; References -- Chapter 19. Selected criteria for image analysis. 19.1. Introduction; 19.2. Image formation; 19.3. Image quality criteria; 19.4. Discussion; References -- Chapter 20. Photographic films. 20.1. Introduction; 20.2. Review of photographic films; 20.3. Appendix: derivation of the relationship between (S/N)D and (S/N)E; References.
: Chapter 21. Sources of coherent noise and their reduction. 21.1. Introduction; 21.2. System noise considerations in coherent optical systems; 21.3. Speckle noise reduction techniques; 21.4. Design considerations for coherent optical systems; References.-- Chapter 22. Division of wavefront interferometry. 22.1. Introduction; 22.2. Array theorem; 22.3. Examples of division of wavefront inerferometry; References.-- Chapter 23. Division of amplitude interferometry. 23.1. Introduction; 23.2. General analysis; 23.3. Case I: Wavefront preserving interferometry for holograms; 23.4. Case II: Wavefront measuring interferometers; 23.5. Case III: Michelson interferometer with variable delay; 23.6. Case IV: Shearing interferometry; References -- Chapter 24. Multiple-Beam Interference. 24.1. Introduction; 24.2. Analysis; 24.3. Visibility of the fringes of an N-beam interferometer; 24.4. Additional characteristics of multiple-beam interferometers; 24.5. Chromatic resolving power of a multiple-beam interferometer; 24.6. Fabry-Perot interferometry; References -- Chapter 25. Introduction to holography. 25.1. Introduction; 25.2. Reconstruction of a two-beam interferogram; 25.3. Reconstruction of ideal two-beam interferograms; 25.4. Basic description of a two-beam hologram; 25.5. Formation and reconstruction of a Fourier transform hologram; 25.6. Other comments on Fourier transform holograms; 25.7. Types of holograms; 25.8. Simplified three-dimensional holography; 25.9. Fresnel and Fraunhofer holography; 25.10. Space bandwidth product of a Fresnel hologram; References.
: Chapter 26. Holographic interferometry. 26.1. Introduction; 26.2. Basic objective and the advantages of holographic interferometry; 26.3. Types of holographic interferometry; 26.4. Simple holographic interferometer analysis; 26.5. Double-exposure holographic interferometry; 26.6. Differential or time-lapse double-exposure holographic interferometry; 26.7. Single-exposure (real-time) holographic interferometry; 26.8. Multiple-exposure or time-average holographic interferometry; 26.9. Multiple-wavelength holography for contouring; 26.10. Computer-generated holographic interferometry; 26.11. Conclusions; References -- Chapter 27. Applications of holography. 27.1. Introduction; 27.2. Image formation; 27.3. Holographic optical elements; 27.4. Conclusions; 27.5. Appendix: Miscellaneous terminology; 27.6. Appendix: Interference microscopy; References -- Chapter 28. Communication theory techniques in optics. 28.1. Introduction; 28.2. Sampling theorem; 28.3. Statistical description of random samples; References -- Chapter 29. Analog optical computing: experimental Fourier analysis. 29.1. Introduction; 29.2. Optical Fourier transforms; 29.3. Slit aperture; 29.4. Periodic rectangular apertures; 29.5. Optical addition; 29.6. Optical convolution; 29.7. Optical spectrum replication by multiplication; 29.8. Appendix: Fourier transform of a rectangular wave; References.
: Chapter 30. Analog optical computing: fourier synthesis utilizing amplitude filters. 30.1. Generalized optical system for fourier filtering; 30.2. Multiplication with binary filter functions; 30.3. Object replication as an example of multiplication with a periodic binary filter; 30.4. Optical subtraction by multiplication with a periodic amplitude filter; References -- Chapter 31. Analog optical computing: Fourier synthesis utilizing amplitude and/or phase filters. 31.1. Optical division; 31.2. Case I: real filters; 31.3. Case II: purely imaginary inverse filters; 31.4. Case III: complex inverse filters; References -- Chapter 32. Analog optical computing: additional mathematical operations. 32.1. Fresnel transform; 32.2. Mellin transform; 32.3. Differentiation and integration of optical signals; References -- Chapter 33. Analog optical computing: optical correlation techniques. 33.1. Introduction; 33.2. Incoherent light correlation; 33.3. Coherent light correlation; 33.4. True one-dimensional, multichannel correlation system; References -- Chapter 34. Optically modulated imagery. 34.1. Introduction; 34.2. The concept of carrier-modulated imaging; 34.3. Multiple image storage with angularly dependent carriers; 34.4. Encoding color images on black-and-white film; 34.5. Phase-modulated images; 34.6. The square-array-modulated image concept; 34.7. Image holography: three-dimensional image modulation; References.
: Chapter 35. Phase contrast imaging. 35.1. Introduction; 35.2. Phase contrast viewing methods; 35.3. Phase visualization by defocus and Schlieren techniques: nonlinear methods; 35.4. Phase contrast imaging with extended linearity; 35.5. Conclusions; 35.6. Appendix: Imaging with an oblique illumination double-sideband phase contrast system; References -- Chapter 36. Partially filled, synthetic aperture imaging systems: incoherent illumination. 36.1. Introduction; 36.2. Nonlinearities of partially filled synthetic apertures due to degree of coherence; 36.3. Aperture synthesis with incoherent illumination; 36.4. Appendix: Derivations of the alignment tolerances listed in Table 36.I for small segment dislocations; 36.5. Appendix: Formulation of the optical synthetic aperture analysis; References -- Chapter 37. Partially filled, synthetic aperture imaging systems: coherent illumination. 37.1. Aperture synthesis with coherent illumination; 37.2. Measurement of F12 (0) with an optical synthetic aperture; 37.3. Super-resolving pupil functions; 37.4. Conclusions; References -- Chapter 38. Parametric design of a conceptual high-resolution optical lithographic printer. 38.1. Introduction; 38.2. Background; 38.3. Proposed system and critical issues; 38.4. Optical subsystem considerations; 38.5. Exposure subsystem considerations; 38.6. Optical lens design considerations; 38.7. Focusing and alignment considerations; 38.8. Overview of the proposed system; 38.9. Conclusions; References -- Index.
: Chapter 9. Fresnel diffraction. 9.1. Introduction; 9.2. Fresnel diffraction: near field; 9.3. Fresnel's integrals; 9.4. Fresnel diffraction by a rectangular aperture; 9.5. Fresnel diffraction by a straight edge; 9.6. Fresnel diffraction by a circular aperture -- Chapter 10. Heuristic introduction to partially coherent light. 10.1. Introduction; 10.2. Partially coherent light; 10.3. Conclusions -- Chapter 11. Elementary theory of optical coherence: Part I. 11.1. Introduction; 11.2. Elements of classical coherence theory; 11.3. Review of the theory of partial coherence; References -- Chapter 12. Image formation with coherent light. 12.1. Introduction; 12.2. The measurement of intensity; 12.3. Addition of optical fields; 12.4. The imaging problem; 12.5. The amplitude impulse response; 12.6. The amplitude transfer function; 12.7. Conclusions; References -- Chapter 13. Coherent imaging. resolution. 13.1. Introduction; 13.2. Image of a two-point object; 13.3. One-dimensional system; 13.4. Discussion: one-dimensional system; 13.5. Two-dimensional system; 13.6. Discussion: two-dimensional system; 13.7. Conclusions; References -- Chapter 14. Coherent imaging: examples. 14.1. Introduction; 14.2. Image of an edge object; 14.3. Image of a slit object; 14.4. Reflected light imaging; 14.5. Conclusions; References.
Abstract : Approaches the topic of physical optics with examples drawn from the physical processes described. Includes chapters on Fourier transforms, image formation, optical coherence, diffraction, interference, holography, interferometry, analog optical computing, synthetic aperture imaging, and others. Contains more than 600 photographs and line drawings and more than 650 references.
Subject : Physical optics.
Subject : Optique physique.
Subject : Fourier transform optics.
Subject : Fourier, transformations de.
Subject : Optics.
Subject : Optik
Subject : Optique électronique.
Subject : Optique physique.
Subject : Photonics.
Subject : Physical optics.
Dewey Classification : ‭535/.2‬
LC Classification : ‭QC395.2‬‭.N48 1989‬
NLM classification : ‭PHY 360f‬stub
: ‭UH 5400‬rvk
Added Entry : DeVelis, John B.
: Parrent, George B.
: Parrent, George B.
: Thompson, Brian J.
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟