رکورد قبلیرکورد بعدی

" Arithmetical investigations : "


Document Type : BL
Record Number : 981861
Doc. No : b736231
Main Entry : Haran, M. J. Shai.
Title & Author : Arithmetical investigations : : representation theory, orthogonal polynomials, and quantum interpolations /\ Shai M.J. Haran.
Publication Statement : Berlin :: Springer,, ©2008.
Series Statement : Lecture notes in mathematics,; 1941
Page. NO : 1 online resource (xii, 217 pages) :: illustrations
ISBN : 3540783784
: : 3540783792
: : 6611850643
: : 9783540783787
: : 9783540783794
: : 9786611850647
Bibliographies/Indexes : Includes bibliographical references and index.
Contents : Introduction: Motivations from Geometry -- Gamma and Beta Measures -- Markov Chains -- Real Beta Chain and q-Interpolation -- Ladder Structure -- q-Interpolation of Local Tate Thesis -- Pure Basis and Semi-Group -- Higher Dimensional Theory -- Real Grassmann Manifold -- p-Adic Grassmann Manifold -- q-Grassmann Manifold -- Quantum Group Uq(su(1, 1)) and the q-Hahn Basis.
Abstract : In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp, w). The real analogue of the p-adic integers is the interval [-1,1], and a probability measure w on it gives rise to a special basis for L2([-1,1], w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of [-1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un)groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.
Subject : Interpolation.
Subject : p-adic numbers.
Subject : Representations of quantum groups.
Subject : Interpolation.
Subject : p-adic numbers.
Subject : Representations of quantum groups.
Subject : Interpolation.
Subject : p-adic numbers.
Subject : Representations of quantum groups.
Dewey Classification : ‭511.42‬
LC Classification : ‭QA3‬‭.L28 no. 1941‬
NLM classification : ‭O174. 41‬clc
کپی لینک

پیشنهاد خرید
پیوستها
Search result is zero
نظرسنجی
نظرسنجی منابع دیجیتال

1 - آیا از کیفیت منابع دیجیتال راضی هستید؟